cis-syn-cis-1,2,4,5-Tetracyclohexylcyclohexane. A Moderately Crowded Saturated Hydrocarbon Adopting a Twist-Boat Conformation

Oren Golan, Shmuel Cohen, and Silvio E. Biali*
Department of Organic Chemistry, The Hebrew University of J erusalem J erusalem 91904, Israe

Received March 12, 1999

A cyclohexane ring usually prefers the chair (1) over the twist-boat (TB, 2) conformation when present in unconstrained saturated hydrocarbons. ${ }^{1,2}$ Bulky substituents (e.g., tert-butyl groups) can modify the chair/TB energy gap, and in some substitution patterns they may even render the TB the preferred conformation by preferentially destabilizing the chair form. ${ }^{1-4}$ A computational study predicted that four isopropyls or just two isopropyls and two methyls attached to a cyclohexyl ring in a cis,trans,trans-1,2,3,4 or cis,syn,cis-1,2,4,5 pattern are sufficient for rendering the TB the preferred conformation. ${ }^{4}$ This change in the normal conformational preferences is due to the selective destabilization of the chair conformation. A system with the first substitution pattern (cis,trans,trans-1,2,3,4-tetracycl ohexyl cycl ohexane) was shown by X-ray crystallography to adopt a TB conformation. ${ }^{5}$ In this note we demonstrate experimentally that a system with the cis,syn,cis-1,2,4,5 pattern prefers the TB conformation.

2

3
$R=c-\mathrm{C}_{6} \mathrm{H}_{11}$
$4 \mathrm{R}=\mathrm{Ph}$
$5 \mathrm{R}=\mathrm{c}-\mathrm{C}_{6} \mathrm{H}_{11}$

1,2,4,5-Tetracycl ohexyl cyclohexane (3) exists in seven stereoisomeric forms (three meso forms and two enantiomeric pairs, Scheme 1). ${ }^{6}$ Cal culations of the TB/chair gaps of 1,2,4,5-tetracyclohexylcyclohexanes were per-

[^0]
Scheme 1

$$
\mathrm{R}=\mathrm{c}-\mathrm{C}_{6} \mathrm{H}_{11}
$$

trans, anti,trans

trans, anti,trans

cis,trans

cis, trans
formed with the MM3(92) program ${ }^{7}$ together with the HUNTER conformational search procedure (Table 1). ${ }^{8}$ As indicated by the calculations, the cis,syn, cis form is predicted to adopt a TB conformation. The unusually large stability of the TB form relative to the chair form ($7.1 \mathrm{kcal} \mathrm{mol}^{-1}$) is most likely the result of unavoidable 1,3-diaxial interactions in the chair form. These interactions cannot be alleviated by ring inversion, because the process relocates the pair of equatorial substituents into axial positions (Scheme 2). The TB/chair energy gaps are similar to those previously calculated for the corresponding 1,2,4,5-tetraisopropylcyclohexanes. ${ }^{4}$ This is reasonable because isopropyl and cyclohexyl groups are nearly isosteric near their attachment point. ${ }^{9}$ In all of the configurational isomers of $\mathbf{3}$ calculated, in the lowest energy conformation the peripheral cyclohexyl rings were found to adopt a chair conformation and to be connected to the central rings through their equatorial positions.
Catalytic hydrogenation of 1,2,4,5-tetraphenylbenzene ${ }^{10}(4)$ at $250^{\circ} \mathrm{C}\left(\mathrm{Pd} / \mathrm{C}, 660\right.$ psi $\left.\mathrm{H}_{2}\right)$ afforded the trans,syn,trans and trans, anti, trans isomers of $\mathbf{3}$ (mp 221 and $240^{\circ} \mathrm{C}$), which were separated by fractional crystallization. According to the calculations (Table 1), these products correspond to the lowest energy isomers. X-ray crystallography indicated that in both compounds all rings adopt the chair conformation (Figures 1 and 2). ${ }^{11}$ In the trans,syn,trans form the peripheral rings are all located at equatorial positions of the central ring, whereas in the trans, anti, trans form a pair of vicinal cyclohexyl substituents are located at axial and a pair at equatorial positions.
trans,anti,trans-3 displays eight NMR signals in the ${ }^{13} \mathrm{C}$ NMR spectrum ($\mathrm{CDCl}_{3}, \mathrm{rt}$). Upon lowering of the temperature of a $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ sol ution, the signals broadened and decoalesced. The barrier measured ($\Delta \mathrm{G}_{\mathrm{c}}{ }^{\ddagger}=9.7 \mathrm{kcal}$ mol^{-1} at 194 K) is ascribed to a ring inversion process of the central ring that exchanges the axial with the equatorial substituents (Scheme 3). This barrier is comparable to the barrier of cyclohexane ($\Delta \mathrm{G}^{\ddagger}=10.2-10.5$
(7) Allinger, N. L. MM3(92): Technical Utilization Corporation.
(8) Weiser, J .; Holthausen, M. C.; Fitjer, L. J . Comput. Chem. 1997, 18, 1264.
(9) For a comparison of the rotational barriers of tetraisopropylethene and tetacycl ohexylethene see: Columbus, I.; Biali, S. E. J . Org. Chem. 1994, 59, 3402.
(10) Harada, K.; Hart, H.; Du, C.-J . F. J . Org. Chem. 1985, 50, 5524.
(11) The authors have deposited atomic coordinates for the structures with the Cambridge Crystallographic Data Centre. The coordinates can be obtained, on request, from the Director, Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, U.K.

Table 1. Calculated Relative Steric Energies and Heats of Formation (MM3, in $\mathrm{kcal} \mathrm{mol}^{-1}$) of 3

configuration	chair(eq) ${ }^{\text {a }}$	chair (ax) ${ }^{\text {b }}$	TB ${ }^{\text {c }}$	HFO ${ }^{\text {d }}$
trans,syn,trans	0.0	nfe		-113.04
trans,anti,trans		0.0	4.8 (Че, Че, Че, Че)	-110.95
cis,trans	0.0	$n f$	3.3 ($\Psi \mathrm{e}, \mathrm{Ic}, \Psi \mathrm{e}, \mathrm{Ic})$	-107.25
cis,syn,cis		7.1	0.0 ($\Psi \mathrm{e}, \mathrm{Ic}, \Psi \mathrm{\Psi}, \mathrm{Ic})$	-101.84
cis,anti, cis		0.0	2.2 ($Ч$ е, Ча, Ча, Че)	-101.15

a Lowest energy conformation with all (or most) of the alkyl groups in equatorial positions. ${ }^{\text {b }}$ Lowest energy conformation with all (or most) of the alkyl groups in axial positions. ${ }^{\text {c Lowest }}$ calculated twist-boat conformation. Ic, Ψ a, and Ψe denote that the substituents are located at isoclinal, pseudoaxial, or pseudoequatorial positions of the central ring, respectively. ${ }^{d}$ Heat of formation of the lowest energy conformation. ${ }^{\text {e No chair(ax) con- }}$ formation was found.

Figure 1. Crystal structure of trans,syn,trans-3.
kcal mol^{-1}), ${ }^{1,12}$ indicating that the four cyclohexyl substituents in trans,anti,trans-3 do not markedly affect the rigidity of the central ring.

According to heat of formation calculations, the cis,syn,cis isomer corresponds to a high energy form. To avoid epimerization of the product, the hydrogenation of 4 was carried out at a relatively low temperature of 85 ${ }^{\circ} \mathrm{C}\left(640 \mathrm{psi} \mathrm{H}_{2}\right)$. Fractional crystallization of the product afforded cis,syn,cis-3 together with 1,2,4,5-tetracyclohexylbenzene (5). X-ray analysis of a single crystal of cis,syn, cis- 3^{11} corroborates the predictions of the calculations and indicates that the central ring adopts a twist boat conformation of approximately C_{2} symmetry (Figure 3) with the peripheral "chair" cycl ohexyls located at isoclinal and pseudoequatorial positions of the central ring. The ${ }^{3} \mathrm{~J}$ coupling constants between the methylene and methine protons of the central ring of the chair and TB forms of cis,syn,cis- 3 were estimated using the MM3 geometry (for the chair form) and the crystal coordinates

[^1]

Figure 2. Molecular structure of trans,anti,trans-3.

Figure 3. Numbering scheme of the crystal structure of cis,-syn,cis-3. The central ring adopts a twist-boat conformation.

Scheme 2

Scheme 3

$\mathrm{R}=\mathrm{c}-\mathrm{C}_{6} \mathrm{H}_{11}$
(for the TB form). The ${ }^{3}$) values were calculated by the Karplus equation (using Altona's parameters) ${ }^{13}$ assuming that the chair form undergoes fast chair inversion while the TB form undergoes fast enantiomerization on the NMR time scale (Scheme 4). The calculated ${ }^{3}$ J values were 9.6 and 1.4 Hz for the chair form and 12.4 and 4.7 Hz for theTB. Analysis of the NMR spectrum of cis,syn,-cis-3 ($\mathrm{CDCl}_{3}, ~ r t, 600.132 \mathrm{MHz}$) indicated that these

[^2]
Scheme 4

$\xlongequal{\text { chair inversion }}$

coupling constants are 13.0 ± 0.4 and $4.3 \pm 0.4 \mathrm{~Hz}$, in agreement with the presence of a TB conformation in solution.

In conclusion, we have shown experimentally that four cyclohexyl groups in a cis,syn,cis-1,2,4,5 pattern render the TB the lowest energy conformation of the central ring.

Experimental Section

Pd/C (5% Pd) was purchased from Aldrich. Different batches of the catalyst showed different reactivity. Coupling constants were determined from the active couplings in the cross-peaks of the COSY DQF spectrum. ${ }^{14}$
trans,syn,trans- and trans,anti,trans-3. Compound $\mathbf{4}^{10}(0.2$ g) dissol ved in cyclohexane (40 mL) and acetic acid (0.5 mL) was hydrogenated using a Parr pressure reactor ($0.21 \mathrm{~g} \mathrm{Pd} / \mathrm{C}, 650$ psi $\mathrm{H}_{2}, 250^{\circ} \mathrm{C}, 145 \mathrm{~h}$). After work up, an additional hydrogenation was performed ($0.20 \mathrm{~g} \mathrm{Pd} / \mathrm{C}, 640 \mathrm{psi} \mathrm{H}_{2}, 230{ }^{\circ} \mathrm{C}, 40 \mathrm{~h}$), affording a mixture of trans,syn, trans-3 and trans, anti, trans-3 which were separated by fractional crystallization $\left(\mathrm{CHCl}_{3} /\right.$ EtOH). The first fraction was trans,syn,trans-3 (35\%), and the second fraction afforded the trans-anti-trans isomer in 25% yield. trans,syn,trans-3: mp $240{ }^{\circ} \mathrm{C} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 44.05$ (C1),
 (C2), 26.25 (C2') ppm; MS m/z 412.4. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{52}$: C,

[^3]87.29; $\mathrm{H}, 12.71$. Found: $\mathrm{C}, 87.00 ; \mathrm{H}, 12.54$. trans, anti,trans-3: $\mathrm{mp} 221{ }^{\circ} \mathrm{C} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 38.93$ (C1), 37.01 ($\left.\mathrm{Cl}^{\prime}\right), 31.97$ (C6'), 28.42 (C2'), 27.01 (C3', C4', or C5'), 26.94 (C3', C4', or C5'), 26.86 (C3', C4', or C5'), 22.92 (C2) ppm; MS m/z 412.4. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{52}$: C, 87.29; H, 12.71. Found: C, 87.13; H, 12.44.
cis,syn,cis-3. Compound $4(0.15 \mathrm{~g})$ dissolved in cydohexane $(40 \mathrm{~mL})$ was hydrogenated in a Parr pressure reactor (0.042 mg $\mathrm{Pd} / \mathrm{C}, 640$ psi $\mathrm{H}_{2}, 85^{\circ} \mathrm{C}$). The full hydrogenation of 4 required three hydrogenation cycles (22, 64, and 18 hs). After filtration of the catalyst and evaporation of the solvent, the residue was fractionally crystallized from $\mathrm{CHCl}_{3} / \mathrm{EtOH}$ affording cis,syn,cis-3 (27\%) and 1,2,4,5-tetracyclohexylbenzene (23\%). cis,syn,cis-3: $\mathrm{mp} 194{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600.13 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{rt}\right) \delta 1.80(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{H} 6^{\prime}\right), 1.74\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H} 3^{\prime}+\mathrm{H} 4^{\prime}\right.$ or H 5$), 1.67\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H} 4^{\prime}\right.$ or $\left.\mathrm{H} 5^{\prime}\right)$, $1.58\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{\prime}\right), 1.54(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 2), 1.48(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H} 1), 1.41(\mathrm{~m}$, $\left.4 \mathrm{H}, \mathrm{H} 1^{\prime}\right), 1.25\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H} 3^{\prime}+\mathrm{H} 4^{\prime}\right.$ or $\left.\mathrm{H} 5^{\prime}\right), 1.15\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H} 4^{\prime}\right.$ or H5'), $1.07(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 2), 1.02\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H} 6^{\prime}+\mathrm{H}^{\prime}\right) ;{ }^{13} \mathrm{C}$ NMR (100.6 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{rt}\right) \delta 39.87$ (C1), 38.13 ($\left.\mathrm{Cl}^{\prime}\right), 33.02$ (C^{\prime}), 29.77 (C^{\prime}), 27.05 (C3'), 26.83 (C4'), 26.77 (C5'), 22.29 (C2) ppm; MS m/z 412.3. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{52}$: C, 87.29; H, 12.71. Found: C, 87.12; H, 12.71.

X-ray Crystallography. Data were measured on an ENRAF Nonius CAD-4 or PW1100/20 Philips four-circle computercontrolled diffractometer. $\mathrm{Cu} \mathrm{K} \alpha(\lambda=1.54178 \AA$) or MoK α (λ $=0.71069 \AA$) radiation with a graphite crystal monochromator in the incident beam was used. trans,syn,trans-3: space group $P \overline{1}, a=10.098(1), b=15.157(1), c=9.672(3) \AA, \alpha=91.38(2)^{\circ}$, $\beta=115.34(2)^{\circ}, \gamma=81.76(1)^{\circ}, \mathrm{V}=1323.0(6) \AA^{3}, \mathrm{z}=2, \rho_{\mathrm{calc}}=$ $1.04 \mathrm{~g} \mathrm{~cm}^{-3}, \mu(\mathrm{Cu} \mathrm{K} \alpha)=3.87 \mathrm{~cm}^{-1}$, no. of unique reflections $=$ 4862, no. of reflections with $\mathrm{I} \geq 3 \sigma_{\mathrm{l}}=4206, \mathrm{R}=0.041, \mathrm{R}_{\mathrm{w}}=$ 0.071. trans,anti,trans-3: space group P2/c, $a=16.647(3), b=$ $10.172(2), \mathrm{c}=16.868(3) \AA, \beta=112.18(1)^{\circ}, V=3644.6(8) \AA^{3}, \mathrm{z}=$ $4, \rho_{\text {calc }}=1.04 \mathrm{~g} \mathrm{~cm}^{-3}, \mu(\mathrm{Cu} K \alpha)=3.87 \mathrm{~cm}^{-1}$, no. of unique reflections $=5307$, no. of reflections with $\mathrm{I} \geq 3 \sigma_{1}=3248, \mathrm{R}=$ 0.045, $\mathrm{R}_{\mathrm{w}}=0.065$. cis,syn, cis-3: $\mathrm{C}_{30} \mathrm{H}_{52}$, space group $\mathrm{P} 2_{1} / \mathrm{n}$, $\mathrm{a}=$ $16.336(3), \mathrm{b}=16.057(2), \mathrm{c}=10.388(1) \AA, \beta=102.69(2)^{\circ}, \mathrm{V}=$ $2658.3(7) \AA^{3}, z=4, \rho_{\text {calc }}=1.03 \mathrm{~g} \mathrm{~cm}^{-3}, \mu($ Mo $K \alpha)=0.53 \mathrm{~cm}^{-1}$, no. of unique reflections $=4882$, no. of reflections with $\mathrm{I} \geq 3 \sigma_{\mathrm{I}}$ $=2895, \mathrm{R}=0.042, \mathrm{R}_{\mathrm{w}}=0.053$.

Acknowledgment. This work was supported by the United States-Israel Binational Science Foundation (BSF). We thank Dr. Roy E. Hoffman for assistance with the NMR experiments.
J O990453Q

[^0]: (1) (a) Conformational Behavior of Six-Membered Rings; J uaristi, E., Ed.; VCH Publishers: New York, 1995. (b) Eliel, E. L.; Wilen, S. H.; Mander, L. N. Stereochemistry of Organic Compounds; Wiley: New York, 1994.
 (2) For a review on nonchair conformations of cyclohexane see: Kellie, G. M.; Riddell, F. G. Top. Stereochem. 1974, 8, 225.
 (3) A cyclohexane 1,4-cis-disubstituted by a quinone and a porphyrin moiety has been shown to adopt a twist-boat conformation, see: Dieks, H.; Senge, M. O.; Kirste, B.; Kurreck, H. J . Org. Chem. 1997, 62, 8660.
 (4) Weiser, J .; Golan, O.; Fitjer, L.; Biali, S. E. J . Org. Chem. 1996, 61, 8277.
 (5) Columbus, I.; H offman, R. E.; Biali, S. E. J . Am. Chem. Soc. 1996, 118, 6890.
 (6) F or simplicity, the configurational isomers of $\mathbf{3}$ will be described by the method commonly used for fused-ring cyclohexanes. The mutual disposition of two vicinal groups will be denoted as "cis" or "trans". If the two substituents at the 1 and 5 positions of the central ring are in a mutual cis or trans relationship, this will be denoted by the "syn" and "anti" descriptors, respectively.

[^1]: (12) For a recent determination of the inversion barrier of cyclohexane see: O'Leary, B. M.; Grotzfeld, R. M.; Rebek, J., J r. J. Am. Chem. Soc. 1997, 119, 11701.

[^2]: (13) Haasnoot, C. A. G.; de Leeuw, F. A. A. M.; Altona, C. Tetrahedron 1980, 36, 2783.

[^3]: (14) Derome, A. E. M odern NMR Techniques for Chemistry Research; Pergamon Press: Oxford, 1987; p 221.

